oksh-noxz

[fork] Portable OpenBSD ksh, based on the Public Domain Korn Shell (pdksh).
git clone https://noxz.tech/git/oksh-noxz.git
Log | Files | Tags

sys-queue.h
1/*	$OpenBSD: queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $	*/
2/*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3
4/*
5 * Copyright (c) 1991, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33 */
34
35/* OPENBSD ORIGINAL: sys/sys/queue.h */
36
37#ifndef	_FAKE_QUEUE_H_
38#define	_FAKE_QUEUE_H_
39
40/*
41 * Require for OS/X and other platforms that have old/broken/incomplete
42 * <sys/queue.h>.
43 */
44#undef SLIST_HEAD
45#undef SLIST_HEAD_INITIALIZER
46#undef SLIST_ENTRY
47#undef SLIST_FOREACH_PREVPTR
48#undef SLIST_FOREACH_SAFE
49#undef SLIST_FIRST
50#undef SLIST_END
51#undef SLIST_EMPTY
52#undef SLIST_NEXT
53#undef SLIST_FOREACH
54#undef SLIST_INIT
55#undef SLIST_INSERT_AFTER
56#undef SLIST_INSERT_HEAD
57#undef SLIST_REMOVE_HEAD
58#undef SLIST_REMOVE_AFTER
59#undef SLIST_REMOVE
60#undef SLIST_REMOVE_NEXT
61#undef LIST_HEAD
62#undef LIST_HEAD_INITIALIZER
63#undef LIST_ENTRY
64#undef LIST_FIRST
65#undef LIST_END
66#undef LIST_EMPTY
67#undef LIST_NEXT
68#undef LIST_FOREACH
69#undef LIST_FOREACH_SAFE
70#undef LIST_INIT
71#undef LIST_INSERT_AFTER
72#undef LIST_INSERT_BEFORE
73#undef LIST_INSERT_HEAD
74#undef LIST_REMOVE
75#undef LIST_REPLACE
76#undef SIMPLEQ_HEAD
77#undef SIMPLEQ_HEAD_INITIALIZER
78#undef SIMPLEQ_ENTRY
79#undef SIMPLEQ_FIRST
80#undef SIMPLEQ_END
81#undef SIMPLEQ_EMPTY
82#undef SIMPLEQ_NEXT
83#undef SIMPLEQ_FOREACH
84#undef SIMPLEQ_INIT
85#undef SIMPLEQ_INSERT_HEAD
86#undef SIMPLEQ_INSERT_TAIL
87#undef SIMPLEQ_INSERT_AFTER
88#undef SIMPLEQ_REMOVE_HEAD
89#undef XSIMPLEQ_HEAD
90#undef XSIMPLEQ_ENTRY
91#undef XSIMPLEQ_XOR
92#undef XSIMPLEQ_FIRST
93#undef XSIMPLEQ_END
94#undef XSIMPLEQ_EMPTY
95#undef XSIMPLEQ_NEXT
96#undef XSIMPLEQ_FOREACH
97#undef XSIMPLEQ_FOREACH_SAFE
98#undef XSIMPLEQ_INIT
99#undef XSIMPLEQ_INSERT_HEAD
100#undef XSIMPLEQ_INSERT_TAIL
101#undef XSIMPLEQ_INSERT_AFTER
102#undef XSIMPLEQ_REMOVE_HEAD
103#undef XSIMPLEQ_REMOVE_AFTER
104#undef TAILQ_HEAD
105#undef TAILQ_HEAD_INITIALIZER
106#undef TAILQ_ENTRY
107#undef TAILQ_FIRST
108#undef TAILQ_END
109#undef TAILQ_NEXT
110#undef TAILQ_LAST
111#undef TAILQ_PREV
112#undef TAILQ_EMPTY
113#undef TAILQ_FOREACH
114#undef TAILQ_FOREACH_REVERSE
115#undef TAILQ_FOREACH_SAFE
116#undef TAILQ_FOREACH_REVERSE_SAFE
117#undef TAILQ_INIT
118#undef TAILQ_INSERT_HEAD
119#undef TAILQ_INSERT_TAIL
120#undef TAILQ_INSERT_AFTER
121#undef TAILQ_INSERT_BEFORE
122#undef TAILQ_REMOVE
123#undef TAILQ_REPLACE
124#undef CIRCLEQ_HEAD
125#undef CIRCLEQ_HEAD_INITIALIZER
126#undef CIRCLEQ_ENTRY
127#undef CIRCLEQ_FIRST
128#undef CIRCLEQ_LAST
129#undef CIRCLEQ_END
130#undef CIRCLEQ_NEXT
131#undef CIRCLEQ_PREV
132#undef CIRCLEQ_EMPTY
133#undef CIRCLEQ_FOREACH
134#undef CIRCLEQ_FOREACH_REVERSE
135#undef CIRCLEQ_INIT
136#undef CIRCLEQ_INSERT_AFTER
137#undef CIRCLEQ_INSERT_BEFORE
138#undef CIRCLEQ_INSERT_HEAD
139#undef CIRCLEQ_INSERT_TAIL
140#undef CIRCLEQ_REMOVE
141#undef CIRCLEQ_REPLACE
142
143/*
144 * This file defines five types of data structures: singly-linked lists, 
145 * lists, simple queues, tail queues, and circular queues.
146 *
147 *
148 * A singly-linked list is headed by a single forward pointer. The elements
149 * are singly linked for minimum space and pointer manipulation overhead at
150 * the expense of O(n) removal for arbitrary elements. New elements can be
151 * added to the list after an existing element or at the head of the list.
152 * Elements being removed from the head of the list should use the explicit
153 * macro for this purpose for optimum efficiency. A singly-linked list may
154 * only be traversed in the forward direction.  Singly-linked lists are ideal
155 * for applications with large datasets and few or no removals or for
156 * implementing a LIFO queue.
157 *
158 * A list is headed by a single forward pointer (or an array of forward
159 * pointers for a hash table header). The elements are doubly linked
160 * so that an arbitrary element can be removed without a need to
161 * traverse the list. New elements can be added to the list before
162 * or after an existing element or at the head of the list. A list
163 * may only be traversed in the forward direction.
164 *
165 * A simple queue is headed by a pair of pointers, one the head of the
166 * list and the other to the tail of the list. The elements are singly
167 * linked to save space, so elements can only be removed from the
168 * head of the list. New elements can be added to the list before or after
169 * an existing element, at the head of the list, or at the end of the
170 * list. A simple queue may only be traversed in the forward direction.
171 *
172 * A tail queue is headed by a pair of pointers, one to the head of the
173 * list and the other to the tail of the list. The elements are doubly
174 * linked so that an arbitrary element can be removed without a need to
175 * traverse the list. New elements can be added to the list before or
176 * after an existing element, at the head of the list, or at the end of
177 * the list. A tail queue may be traversed in either direction.
178 *
179 * A circle queue is headed by a pair of pointers, one to the head of the
180 * list and the other to the tail of the list. The elements are doubly
181 * linked so that an arbitrary element can be removed without a need to
182 * traverse the list. New elements can be added to the list before or after
183 * an existing element, at the head of the list, or at the end of the list.
184 * A circle queue may be traversed in either direction, but has a more
185 * complex end of list detection.
186 *
187 * For details on the use of these macros, see the queue(3) manual page.
188 */
189
190#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
191#define _Q_INVALIDATE(a) (a) = ((void *)-1)
192#else
193#define _Q_INVALIDATE(a)
194#endif
195
196/*
197 * Singly-linked List definitions.
198 */
199#define SLIST_HEAD(name, type)						\
200struct name {								\
201	struct type *slh_first;	/* first element */			\
202}
203 
204#define	SLIST_HEAD_INITIALIZER(head)					\
205	{ NULL }
206 
207#define SLIST_ENTRY(type)						\
208struct {								\
209	struct type *sle_next;	/* next element */			\
210}
211 
212/*
213 * Singly-linked List access methods.
214 */
215#define	SLIST_FIRST(head)	((head)->slh_first)
216#define	SLIST_END(head)		NULL
217#define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
218#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
219
220#define	SLIST_FOREACH(var, head, field)					\
221	for((var) = SLIST_FIRST(head);					\
222	    (var) != SLIST_END(head);					\
223	    (var) = SLIST_NEXT(var, field))
224
225#define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
226	for ((var) = SLIST_FIRST(head);				\
227	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
228	    (var) = (tvar))
229
230/*
231 * Singly-linked List functions.
232 */
233#define	SLIST_INIT(head) {						\
234	SLIST_FIRST(head) = SLIST_END(head);				\
235}
236
237#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
238	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
239	(slistelm)->field.sle_next = (elm);				\
240} while (0)
241
242#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
243	(elm)->field.sle_next = (head)->slh_first;			\
244	(head)->slh_first = (elm);					\
245} while (0)
246
247#define	SLIST_REMOVE_AFTER(elm, field) do {				\
248	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
249} while (0)
250
251#define	SLIST_REMOVE_HEAD(head, field) do {				\
252	(head)->slh_first = (head)->slh_first->field.sle_next;		\
253} while (0)
254
255#define SLIST_REMOVE(head, elm, type, field) do {			\
256	if ((head)->slh_first == (elm)) {				\
257		SLIST_REMOVE_HEAD((head), field);			\
258	} else {							\
259		struct type *curelm = (head)->slh_first;		\
260									\
261		while (curelm->field.sle_next != (elm))			\
262			curelm = curelm->field.sle_next;		\
263		curelm->field.sle_next =				\
264		    curelm->field.sle_next->field.sle_next;		\
265		_Q_INVALIDATE((elm)->field.sle_next);			\
266	}								\
267} while (0)
268
269/*
270 * List definitions.
271 */
272#define LIST_HEAD(name, type)						\
273struct name {								\
274	struct type *lh_first;	/* first element */			\
275}
276
277#define LIST_HEAD_INITIALIZER(head)					\
278	{ NULL }
279
280#define LIST_ENTRY(type)						\
281struct {								\
282	struct type *le_next;	/* next element */			\
283	struct type **le_prev;	/* address of previous next element */	\
284}
285
286/*
287 * List access methods
288 */
289#define	LIST_FIRST(head)		((head)->lh_first)
290#define	LIST_END(head)			NULL
291#define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
292#define	LIST_NEXT(elm, field)		((elm)->field.le_next)
293
294#define LIST_FOREACH(var, head, field)					\
295	for((var) = LIST_FIRST(head);					\
296	    (var)!= LIST_END(head);					\
297	    (var) = LIST_NEXT(var, field))
298
299#define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
300	for ((var) = LIST_FIRST(head);				\
301	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
302	    (var) = (tvar))
303
304/*
305 * List functions.
306 */
307#define	LIST_INIT(head) do {						\
308	LIST_FIRST(head) = LIST_END(head);				\
309} while (0)
310
311#define LIST_INSERT_AFTER(listelm, elm, field) do {			\
312	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
313		(listelm)->field.le_next->field.le_prev =		\
314		    &(elm)->field.le_next;				\
315	(listelm)->field.le_next = (elm);				\
316	(elm)->field.le_prev = &(listelm)->field.le_next;		\
317} while (0)
318
319#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
320	(elm)->field.le_prev = (listelm)->field.le_prev;		\
321	(elm)->field.le_next = (listelm);				\
322	*(listelm)->field.le_prev = (elm);				\
323	(listelm)->field.le_prev = &(elm)->field.le_next;		\
324} while (0)
325
326#define LIST_INSERT_HEAD(head, elm, field) do {				\
327	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
328		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
329	(head)->lh_first = (elm);					\
330	(elm)->field.le_prev = &(head)->lh_first;			\
331} while (0)
332
333#define LIST_REMOVE(elm, field) do {					\
334	if ((elm)->field.le_next != NULL)				\
335		(elm)->field.le_next->field.le_prev =			\
336		    (elm)->field.le_prev;				\
337	*(elm)->field.le_prev = (elm)->field.le_next;			\
338	_Q_INVALIDATE((elm)->field.le_prev);				\
339	_Q_INVALIDATE((elm)->field.le_next);				\
340} while (0)
341
342#define LIST_REPLACE(elm, elm2, field) do {				\
343	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
344		(elm2)->field.le_next->field.le_prev =			\
345		    &(elm2)->field.le_next;				\
346	(elm2)->field.le_prev = (elm)->field.le_prev;			\
347	*(elm2)->field.le_prev = (elm2);				\
348	_Q_INVALIDATE((elm)->field.le_prev);				\
349	_Q_INVALIDATE((elm)->field.le_next);				\
350} while (0)
351
352/*
353 * Simple queue definitions.
354 */
355#define SIMPLEQ_HEAD(name, type)					\
356struct name {								\
357	struct type *sqh_first;	/* first element */			\
358	struct type **sqh_last;	/* addr of last next element */		\
359}
360
361#define SIMPLEQ_HEAD_INITIALIZER(head)					\
362	{ NULL, &(head).sqh_first }
363
364#define SIMPLEQ_ENTRY(type)						\
365struct {								\
366	struct type *sqe_next;	/* next element */			\
367}
368
369/*
370 * Simple queue access methods.
371 */
372#define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
373#define	SIMPLEQ_END(head)	    NULL
374#define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
375#define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
376
377#define SIMPLEQ_FOREACH(var, head, field)				\
378	for((var) = SIMPLEQ_FIRST(head);				\
379	    (var) != SIMPLEQ_END(head);					\
380	    (var) = SIMPLEQ_NEXT(var, field))
381
382#define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
383	for ((var) = SIMPLEQ_FIRST(head);				\
384	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
385	    (var) = (tvar))
386
387/*
388 * Simple queue functions.
389 */
390#define	SIMPLEQ_INIT(head) do {						\
391	(head)->sqh_first = NULL;					\
392	(head)->sqh_last = &(head)->sqh_first;				\
393} while (0)
394
395#define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
396	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
397		(head)->sqh_last = &(elm)->field.sqe_next;		\
398	(head)->sqh_first = (elm);					\
399} while (0)
400
401#define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
402	(elm)->field.sqe_next = NULL;					\
403	*(head)->sqh_last = (elm);					\
404	(head)->sqh_last = &(elm)->field.sqe_next;			\
405} while (0)
406
407#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
408	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
409		(head)->sqh_last = &(elm)->field.sqe_next;		\
410	(listelm)->field.sqe_next = (elm);				\
411} while (0)
412
413#define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
414	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
415		(head)->sqh_last = &(head)->sqh_first;			\
416} while (0)
417
418#define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
419	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
420	    == NULL)							\
421		(head)->sqh_last = &(elm)->field.sqe_next;		\
422} while (0)
423
424/*
425 * XOR Simple queue definitions.
426 */
427#define XSIMPLEQ_HEAD(name, type)					\
428struct name {								\
429	struct type *sqx_first;	/* first element */			\
430	struct type **sqx_last;	/* addr of last next element */		\
431	unsigned long sqx_cookie;					\
432}
433
434#define XSIMPLEQ_ENTRY(type)						\
435struct {								\
436	struct type *sqx_next;	/* next element */			\
437}
438
439/*
440 * XOR Simple queue access methods.
441 */
442#define XSIMPLEQ_XOR(head, ptr)	    ((__typeof(ptr))((head)->sqx_cookie ^ \
443					(unsigned long)(ptr)))
444#define	XSIMPLEQ_FIRST(head)	    XSIMPLEQ_XOR(head, ((head)->sqx_first))
445#define	XSIMPLEQ_END(head)	    NULL
446#define	XSIMPLEQ_EMPTY(head)	    (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
447#define	XSIMPLEQ_NEXT(head, elm, field)    XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
448
449
450#define XSIMPLEQ_FOREACH(var, head, field)				\
451	for ((var) = XSIMPLEQ_FIRST(head);				\
452	    (var) != XSIMPLEQ_END(head);				\
453	    (var) = XSIMPLEQ_NEXT(head, var, field))
454
455#define	XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
456	for ((var) = XSIMPLEQ_FIRST(head);				\
457	    (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1);	\
458	    (var) = (tvar))
459
460/*
461 * XOR Simple queue functions.
462 */
463#define	XSIMPLEQ_INIT(head) do {					\
464	arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
465	(head)->sqx_first = XSIMPLEQ_XOR(head, NULL);			\
466	(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first);	\
467} while (0)
468
469#define XSIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
470	if (((elm)->field.sqx_next = (head)->sqx_first) ==		\
471	    XSIMPLEQ_XOR(head, NULL))					\
472		(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
473	(head)->sqx_first = XSIMPLEQ_XOR(head, (elm));			\
474} while (0)
475
476#define XSIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
477	(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL);		\
478	*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
479	(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next);	\
480} while (0)
481
482#define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
483	if (((elm)->field.sqx_next = (listelm)->field.sqx_next) ==	\
484	    XSIMPLEQ_XOR(head, NULL))					\
485		(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
486	(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm));		\
487} while (0)
488
489#define XSIMPLEQ_REMOVE_HEAD(head, field) do {				\
490	if (((head)->sqx_first = XSIMPLEQ_XOR(head,			\
491	    (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
492		(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
493} while (0)
494
495#define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
496	if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head,			\
497	    (elm)->field.sqx_next)->field.sqx_next)			\
498	    == XSIMPLEQ_XOR(head, NULL))				\
499		(head)->sqx_last = 					\
500		    XSIMPLEQ_XOR(head, &(elm)->field.sqx_next);		\
501} while (0)
502
503		    
504/*
505 * Tail queue definitions.
506 */
507#define TAILQ_HEAD(name, type)						\
508struct name {								\
509	struct type *tqh_first;	/* first element */			\
510	struct type **tqh_last;	/* addr of last next element */		\
511}
512
513#define TAILQ_HEAD_INITIALIZER(head)					\
514	{ NULL, &(head).tqh_first }
515
516#define TAILQ_ENTRY(type)						\
517struct {								\
518	struct type *tqe_next;	/* next element */			\
519	struct type **tqe_prev;	/* address of previous next element */	\
520}
521
522/* 
523 * tail queue access methods 
524 */
525#define	TAILQ_FIRST(head)		((head)->tqh_first)
526#define	TAILQ_END(head)			NULL
527#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
528#define TAILQ_LAST(head, headname)					\
529	(*(((struct headname *)((head)->tqh_last))->tqh_last))
530/* XXX */
531#define TAILQ_PREV(elm, headname, field)				\
532	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
533#define	TAILQ_EMPTY(head)						\
534	(TAILQ_FIRST(head) == TAILQ_END(head))
535
536#define TAILQ_FOREACH(var, head, field)					\
537	for((var) = TAILQ_FIRST(head);					\
538	    (var) != TAILQ_END(head);					\
539	    (var) = TAILQ_NEXT(var, field))
540
541#define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
542	for ((var) = TAILQ_FIRST(head);					\
543	    (var) != TAILQ_END(head) &&					\
544	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
545	    (var) = (tvar))
546
547
548#define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
549	for((var) = TAILQ_LAST(head, headname);				\
550	    (var) != TAILQ_END(head);					\
551	    (var) = TAILQ_PREV(var, headname, field))
552
553#define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
554	for ((var) = TAILQ_LAST(head, headname);			\
555	    (var) != TAILQ_END(head) &&					\
556	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
557	    (var) = (tvar))
558
559/*
560 * Tail queue functions.
561 */
562#define	TAILQ_INIT(head) do {						\
563	(head)->tqh_first = NULL;					\
564	(head)->tqh_last = &(head)->tqh_first;				\
565} while (0)
566
567#define TAILQ_INSERT_HEAD(head, elm, field) do {			\
568	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
569		(head)->tqh_first->field.tqe_prev =			\
570		    &(elm)->field.tqe_next;				\
571	else								\
572		(head)->tqh_last = &(elm)->field.tqe_next;		\
573	(head)->tqh_first = (elm);					\
574	(elm)->field.tqe_prev = &(head)->tqh_first;			\
575} while (0)
576
577#define TAILQ_INSERT_TAIL(head, elm, field) do {			\
578	(elm)->field.tqe_next = NULL;					\
579	(elm)->field.tqe_prev = (head)->tqh_last;			\
580	*(head)->tqh_last = (elm);					\
581	(head)->tqh_last = &(elm)->field.tqe_next;			\
582} while (0)
583
584#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
585	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
586		(elm)->field.tqe_next->field.tqe_prev =			\
587		    &(elm)->field.tqe_next;				\
588	else								\
589		(head)->tqh_last = &(elm)->field.tqe_next;		\
590	(listelm)->field.tqe_next = (elm);				\
591	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
592} while (0)
593
594#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
595	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
596	(elm)->field.tqe_next = (listelm);				\
597	*(listelm)->field.tqe_prev = (elm);				\
598	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
599} while (0)
600
601#define TAILQ_REMOVE(head, elm, field) do {				\
602	if (((elm)->field.tqe_next) != NULL)				\
603		(elm)->field.tqe_next->field.tqe_prev =			\
604		    (elm)->field.tqe_prev;				\
605	else								\
606		(head)->tqh_last = (elm)->field.tqe_prev;		\
607	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
608	_Q_INVALIDATE((elm)->field.tqe_prev);				\
609	_Q_INVALIDATE((elm)->field.tqe_next);				\
610} while (0)
611
612#define TAILQ_REPLACE(head, elm, elm2, field) do {			\
613	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
614		(elm2)->field.tqe_next->field.tqe_prev =		\
615		    &(elm2)->field.tqe_next;				\
616	else								\
617		(head)->tqh_last = &(elm2)->field.tqe_next;		\
618	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
619	*(elm2)->field.tqe_prev = (elm2);				\
620	_Q_INVALIDATE((elm)->field.tqe_prev);				\
621	_Q_INVALIDATE((elm)->field.tqe_next);				\
622} while (0)
623
624/*
625 * Circular queue definitions.
626 */
627#define CIRCLEQ_HEAD(name, type)					\
628struct name {								\
629	struct type *cqh_first;		/* first element */		\
630	struct type *cqh_last;		/* last element */		\
631}
632
633#define CIRCLEQ_HEAD_INITIALIZER(head)					\
634	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
635
636#define CIRCLEQ_ENTRY(type)						\
637struct {								\
638	struct type *cqe_next;		/* next element */		\
639	struct type *cqe_prev;		/* previous element */		\
640}
641
642/*
643 * Circular queue access methods 
644 */
645#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
646#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
647#define	CIRCLEQ_END(head)		((void *)(head))
648#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
649#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
650#define	CIRCLEQ_EMPTY(head)						\
651	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
652
653#define CIRCLEQ_FOREACH(var, head, field)				\
654	for((var) = CIRCLEQ_FIRST(head);				\
655	    (var) != CIRCLEQ_END(head);					\
656	    (var) = CIRCLEQ_NEXT(var, field))
657
658#define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
659	for ((var) = CIRCLEQ_FIRST(head);				\
660	    (var) != CIRCLEQ_END(head) &&				\
661	    ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
662	    (var) = (tvar))
663
664#define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
665	for((var) = CIRCLEQ_LAST(head);					\
666	    (var) != CIRCLEQ_END(head);					\
667	    (var) = CIRCLEQ_PREV(var, field))
668
669#define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
670	for ((var) = CIRCLEQ_LAST(head, headname);			\
671	    (var) != CIRCLEQ_END(head) && 				\
672	    ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
673	    (var) = (tvar))
674
675/*
676 * Circular queue functions.
677 */
678#define	CIRCLEQ_INIT(head) do {						\
679	(head)->cqh_first = CIRCLEQ_END(head);				\
680	(head)->cqh_last = CIRCLEQ_END(head);				\
681} while (0)
682
683#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
684	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
685	(elm)->field.cqe_prev = (listelm);				\
686	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
687		(head)->cqh_last = (elm);				\
688	else								\
689		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
690	(listelm)->field.cqe_next = (elm);				\
691} while (0)
692
693#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
694	(elm)->field.cqe_next = (listelm);				\
695	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
696	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
697		(head)->cqh_first = (elm);				\
698	else								\
699		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
700	(listelm)->field.cqe_prev = (elm);				\
701} while (0)
702
703#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
704	(elm)->field.cqe_next = (head)->cqh_first;			\
705	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
706	if ((head)->cqh_last == CIRCLEQ_END(head))			\
707		(head)->cqh_last = (elm);				\
708	else								\
709		(head)->cqh_first->field.cqe_prev = (elm);		\
710	(head)->cqh_first = (elm);					\
711} while (0)
712
713#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
714	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
715	(elm)->field.cqe_prev = (head)->cqh_last;			\
716	if ((head)->cqh_first == CIRCLEQ_END(head))			\
717		(head)->cqh_first = (elm);				\
718	else								\
719		(head)->cqh_last->field.cqe_next = (elm);		\
720	(head)->cqh_last = (elm);					\
721} while (0)
722
723#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
724	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
725		(head)->cqh_last = (elm)->field.cqe_prev;		\
726	else								\
727		(elm)->field.cqe_next->field.cqe_prev =			\
728		    (elm)->field.cqe_prev;				\
729	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
730		(head)->cqh_first = (elm)->field.cqe_next;		\
731	else								\
732		(elm)->field.cqe_prev->field.cqe_next =			\
733		    (elm)->field.cqe_next;				\
734	_Q_INVALIDATE((elm)->field.cqe_prev);				\
735	_Q_INVALIDATE((elm)->field.cqe_next);				\
736} while (0)
737
738#define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
739	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
740	    CIRCLEQ_END(head))						\
741		(head)->cqh_last = (elm2);				\
742	else								\
743		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
744	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
745	    CIRCLEQ_END(head))						\
746		(head)->cqh_first = (elm2);				\
747	else								\
748		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
749	_Q_INVALIDATE((elm)->field.cqe_prev);				\
750	_Q_INVALIDATE((elm)->field.cqe_next);				\
751} while (0)
752
753#endif	/* !_FAKE_QUEUE_H_ */